Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Gastroenterology ; 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2233634

ABSTRACT

BACKGROUND & AIMS: We investigate interrelationships between gut microbes, metabolites, and cytokines that characterize COVID-19 and its complications, and we validate the results with follow-up, a Japanese Disease, Drug, Diet, Daily Life microbiome cohort, and non-Japanese data sets. METHODS: We performed shotgun metagenomic sequencing and metabolomics on stools and cytokine measurements on plasma from 112 hospitalized patients with SARS-CoV-2 infection and 112 non-COVID-19 control individuals matched by important confounders. RESULTS: Multiple correlations were found between COVID-19-related microbes (eg, oral microbes and short-chain fatty acid producers) and gut metabolites (eg, branched-chain and aromatic amino acids, short-chain fatty acids, carbohydrates, neurotransmitters, and vitamin B6). Both were also linked to inflammatory cytokine dynamics (eg, interferon γ, interferon λ3, interleukin 6, CXCL-9, and CXCL-10). Such interrelationships were detected highly in severe disease and pneumonia; moderately in the high D-dimer level, kidney dysfunction, and liver dysfunction groups; but rarely in the diarrhea group. We confirmed concordances of altered metabolites (eg, branched-chain amino acids, spermidine, putrescine, and vitamin B6) in COVID-19 with their corresponding microbial functional genes. Results in microbial and metabolomic alterations with severe disease from the cross-sectional data set were partly concordant with those from the follow-up data set. Microbial signatures for COVID-19 were distinct from diabetes, inflammatory bowel disease, and proton-pump inhibitors but overlapping for rheumatoid arthritis. Random forest classifier models using microbiomes can highly predict COVID-19 and severe disease. The microbial signatures for COVID-19 showed moderate concordance between Hong Kong and Japan. CONCLUSIONS: Multiomics analysis revealed multiple gut microbe-metabolite-cytokine interrelationships in COVID-19 and COVID-19related complications but few in gastrointestinal complications, suggesting microbiota-mediated immune responses distinct between the organ sites. Our results underscore the existence of a gut-lung axis in COVID-19.

2.
Diagn Interv Imaging ; 102(9): 493-500, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1397290

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been reported as a global emergency. As respiratory dysfunction is a major clinical presentation of COVID-19, chest computed tomography (CT) plays a central role in the diagnosis and management of patients with COVID-19. Recent advances in imaging approaches using artificial intelligence have been essential as a quantification and diagnostic tool to differentiate COVID-19 from other respiratory infectious diseases. Furthermore, cardiovascular involvement in patients with COVID-19 is not negligible and may result in rapid worsening of the disease and sudden death. Cardiac magnetic resonance imaging can accurately depict myocardial involvement in SARS-CoV-2 infection. This review summarizes the role of the radiology department in the management and the diagnosis of COVID-19, with a special emphasis on ultra-high-resolution CT findings, cardiovascular complications and the potential of artificial intelligence.


Subject(s)
COVID-19 , Heart Diseases , Artificial Intelligence , COVID-19/complications , COVID-19/diagnostic imaging , Heart Diseases/virology , Humans , Tomography, X-Ray Computed
3.
Jpn J Radiol ; 39(5): 451-458, 2021 May.
Article in English | MEDLINE | ID: covidwho-1064585

ABSTRACT

PURPOSE: To assess the relationships among pulmonary vascular enlargement, computed tomography (CT) findings quantified with software, and coronavirus disease (COVID-19) severity. MATERIALS AND METHODS: Ultra-high-resolution (UHR) CT images of 87 patients (50 males, 37 females; median age, 63 years) with COVID-19 confirmed using real-time polymerase chain reaction were analyzed. The maximum subsegmental vascular diameter was measured on CT. Total CT lung volume (CTLV total) and lesion extent (ratio of lesion volume to CTLV total) of ground-glass opacities, reticulation, and consolidation were measured using software. Maximum pulmonary vascular diameter and lesion extent were analyzed using Spearman's correlation analysis. Logistic regression analysis was performed on CT results to predict disease severity. We also assessed changes in these measures on follow-up scans in 16 patients. RESULTS: All 23 patients with severe and critical illness had vascular enlargement (> 4 mm). Pulmonary vascular enlargement (odds ratio 3.05, p = 0.018) and CT lesion extent (odds ratio 1.07, p = 0.002) were independent predictors of disease severity after adjustment for age and comorbidities. On follow-up CT, vascular diameter and CT lesion volume decreased (p = 0.001, p = 0.002; respectively), but CTLV total did not change significantly. CONCLUSION: Subsegmental vascular enlargement is a notable finding to predict acute COVID-19 disease severity.


Subject(s)
COVID-19/diagnosis , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL